NATIONAL CHEMISTRY OLYMPIAD 2024

MARKING SCHEME PRELIMINARY ROUND 1

To be conducted from 15 until 31 January 2024

- This preliminary round consists of 25 multiple choice questions divided over 9 topics and 2 problems with a total of 8 open questions as well as an answer sheet for the multiple choice questions.
- Use the answer sheet to answer the multiple choice questions.
- Use for each problem with open questions a separate answer sheet. Don't forget to put your name on it.
- The maximum score for this work is 77 points.
- The preliminary round lasts up to two full hours.
- Required materials: (graphic) calculator and BINAS 6th or 7th edition, ScienceData 1st edition or BINAS 5th edition, English version.
- For each question the number of points you can score are given.
- Unless otherwise stated, standard conditions apply: T = 298 K and $p = p_0$.

Problem 1 Multiple choice questions

total 50 points

For every correct answer: 2 points

		Carbon chemistry
1	D	In step 1, an addition of HBr takes place to the double bond. In step 2, Br is substituted by OH.
2	В	The polymer was created by addition polymerization of $\begin{array}{c} CH_3 CH_3 \\ I & I \\ C & C \\ C & C \\ C & CH_3 \end{array}$
3	В	At B, the chlorine atom can replace an H atom on C atom 1 or on C atom 2. The following monochloro substitution products are formed: $CH_3 CH_3 CH_3 CH_3 H_2C -*CH - CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$
4	В	The electron pair from the bond between the O atom and the C atom becomes a lone pair on the O atom. The arrow must therefore point in the direction of the O atom. O atom. Reaction rate and equilibrium
5	D	When the solution is diluted, the equilibrium shifts to the right. The number of moles of H_3O^+ increases. However, $[H_3O^+]$ becomes smaller. So the pH increases.
6	A	$\frac{0.98 \times 1.0 \cdot 10^{-3}}{88} \text{ mol } C_5 H_{12} \text{O is converted in } 4.0 \times 60 \text{ sec.}$ So the reaction rate is $\frac{\frac{0.98 \times 1.0 \cdot 10^{-3}}{88}}{4.0 \times 60} = 4.6 \cdot 10^{-8} \text{ mol s}^{-1}.$
7	C	$K = [Ba^{2+}][IO_3^{}]^2$ $0.2000 - 0.1513 \text{ g } Ba(IO_3)_2 \text{ has been dissolved, that is } \frac{0.2000 - 0.1513}{487.1} \text{ mol } Ba(IO_3)_2.$ $[Ba^{2+}] = \frac{\frac{0.2000 - 0.1513}{487.1}}{0.100} = 9.998 \cdot 10^{-4} \text{ mol } L^{-1} \text{ and } [IO_3^{}] = 2 \times 9.998 \cdot 10^{-4} \text{ mol } L^{-1}.$ $So K = 9.998 \cdot 10^{-4} \times (2 \times 9.998 \cdot 10^{-4})^2 = 4.00 \cdot 10^{-9}.$
8	С	The reaction rate depends on the degree of distribution of the zinc, the concentration of H_3O^+ and the temperature. These have all remained the same at C.

		Thermochemistry
9	A	For reaction 1 applies $\Delta H = -0.133 \cdot 10^5 + 2 \times 0.332 \cdot 10^5 = 0.531 \cdot 10^5$ J per mol N ₂ O ₅ . For reaction 2 applies $\Delta H = -0.332 \cdot 10^5 + 0.913 \cdot 10^5 = 0.581 \cdot 10^5$ J per mol NO ₂ . For the total conversion, $0.725 \cdot 10^5$ J per mol N ₂ O ₅ was needed. The number of moles of NO ₂ that still has to be converted is therefore $\frac{0.725 \cdot 10^5 - 0.531 \cdot 10^5}{0.581 \cdot 10^5} = 0.334 \text{ mol.}$
		Per mole of N ₂ O ₅ , 2 moles of NO ₂ are formed, so in reaction 2, $\frac{0.334}{2} \times 100 = 16.7$ % of the generated NO ₂ is further converted.
		Structures and formulas
10	D	In structure A, the charges on the nitrogen atoms are incorrect. In structures B and C the structures do not have enough electrons and the charges are also incorrect.
11	В	In COCl ₂ , the C has a double bond to the O and a single bond to the Cl atoms. There are no lone pairs on the C atom. In the other answers, the indicated atoms have an electron domain geometry of 4.
12	В	Hg ⁺ has 79 electrons. I ⁻ has 54. Cu ⁺ and Zn ²⁺ have 28. Ni ²⁺ has 26.
		pH / acid-base
13	С	$B + H_2 O \rightleftharpoons HB^+ + OH^-$ $pOH = 14.00 - pH = 1.50$ $[OH^-] = 10^{-1.50} = 0.032 \text{ mol } L^{-1}$ $[B] [HB^+] [OH^-]$ initial 0.15 0 0 change $- \underbrace{0.032}_{0.12} + \underbrace{0.032}_{0.032} + \underbrace{0.032}_{0.032}$ $equilibrium 0.12 0.032 0.032$ $\mathcal{K}_b = \frac{0.032 \times 0.032}{0.12} = 8.4 \cdot 10^{-3}$
14	С	The sodium hydroxide solution contains $150 \times 0.150 = 22.5 \text{ mmol OH}^-$ and the hydrochloric acid contains $250 \times 0.100 = 25.0 \text{ mmol H}_3\text{O}^+$. Therefore there is $25.0 - 22.5 = 2.5 \text{ mmol H}_3\text{O}^+$ in excess. The total volume is $150 + 250 = 400 \text{ mL}$, so $\left[\text{H}_3\text{O}^+\right] = \frac{2.5}{400}$; pH = $-\log \frac{2.5}{400} = 2.20$.

15	F	$HPO_4^{2-} + H_2O \Longrightarrow H_2PO_4^- + OH^-$
		pOH = 14.00 - 7.41 = 6.59; [OH ⁻] = 10 ^{-6.59}
		$K_{\rm b} = 1.6 \cdot 10^{-7} = \frac{\left[H_2 P O_4^{-}\right] \times \left[O H^{-}\right]}{\left[H P O_4^{2^{-}}\right]} = \frac{\left[H_2 P O_4^{-}\right] \times 10^{-6.59}}{\left[H P O_4^{2^{-}}\right]}$
		$\frac{\left[H_2 P O_4^{-1}\right]}{\left[H P O_4^{2^{-1}}\right]} = \frac{1.6 \cdot 10^{-7}}{10^{-6.59}} = 0.62$
		The mole ratio is therefore
		0.62 mol NaH ₂ PO ₄ ($M = 120 \text{ g mol}^{-1}$) : 1.0 mol Na ₂ HPO ₄ ($M = 142 \text{ g mol}^{-1}$).
		The mass ratio is 74.7 g NaH ₂ PO ₄ : 142 g Na ₂ HPO ₄ = 1.0 g NaH ₂ PO ₄ : 1.9 g Na ₂ HPO ₄ .
		Redox and electrolysis
16	С	For the production of 1.0 g Li $\frac{1.0}{6.941}$ mol electrons are required.
		For the production of 1.0 g Al $\frac{1.0}{26.98} \times 3$ mol electrons are required.
		Therefore the production of 1.0 g Al takes $\frac{\frac{1.0}{26.98} \times 3}{\frac{1.0}{\frac{1.0}{1.0}}} = 0.77$ times longer than the
		6.941 production of 1.0 g Li with the same current.
17	С	The standard electrode potentials of the redox couples are:
		$Cr_2O_7^{2-}/Cr^{3+}$ + 1.36 V
		MnO ₄ ⁻ /Mn ²⁺ +1.51 V
		Therefore the oxidizing agent $Cr_2O_7^{2-}$ cannot react with the reducing agent Mn^{2+} .
		NO_3^{-}/NO_2 + 0.80 V SO_4^{2-}/SO_2 + 0.17 V
		Therefore the oxidizing agent NO ₃ ⁻ can react with the reducing agent SO ₂ .
		Analysis
18	D	8.5 mL hydrochloric acid is required for 1.0 mL of the undiluted ammonia solution.
		$25.00 \times 8.5 = 212.5$ mL hydrochloric acid is required for 25.00 mL of the undiluted ammonia solution.
		Between 12 mL and 25 mL hydrochloric acid should be used, therefore the dilution
		factor must be between $\frac{212.5}{25} = 8.5$ and $\frac{212.5}{12} = 18$.
		The dilution factors of A, B, C, D and E are respectively 25, 50, 4, 10 and 20.

19	D	During the titration $14.36 \times 0.00850 = 0.122 \text{ mmol of } AgNO_3 \text{ was used.}$ Because $Ag^+ + Cl^- \rightarrow AgCl$, this also makes $0.122 \text{ mmol } Cl^-$ in the 10.00 mL of the diluted sodium chloride solution. Which means that 10.00 mL of the diluted NaCl solution contained 0.122 mmol NaCl.
		In 10.00 mL undiluted solution $\frac{0.122 \times 250.0}{10.00} = 3.05$ mmol NaCl was present.
		The molarity of the undiluted NaCl solution was: $\frac{3.05}{10.00} = 3.05 \cdot 10^{-1} \text{ mol L}^{-1}$.
20	G	Fragmentation of the molecules I en III will cause $C_3H_7^+$ fragments that peak around $m/z = 43$.
		Fragmentation of the molecule II will cause fragments of CH_3CO^+ that peak around $m/z = 43$.
21	Α	At the first equivalence point at 6 mL sodium hydroxide solution only the stronger acid has completely reacted. At the second equivalence point, which is at 10 mL (so 4 mL later), the weaker acid has also completely reacted. Therefore, to completely convert a strong acid one needs more of the base, and the molarity of the strong acid is larger. This means that statement I is incorrect.
		Methyl yellow has a colour change range that lies between 2.9 and 4.0. It changes colour too early, which causes the first equivalence point to be imprecisely determined. Statement II is also wrong.
		Chemical calculations
22	E	$\frac{16.0}{55.85}$ mol Fe reacts; this has a volume of $\frac{16.0}{7.87} = 2.03$ cm ³ .
		This creates $\frac{16.0}{55.85} \times \frac{2}{4} \times 159.7$ g Fe ₂ O ₃ with a volume of $\frac{\frac{16.0}{55.85} \times \frac{2}{4} \times 159.7}{5.25} = 4.36$ cm ³ .
		Increase in volume = $4.36 - 2.03 = 2.33 \text{ cm}^3$.
23	С	The hydrocarbon with the highest mass percentage of carbon yields the largest amount of $\rm CO_2$ upon combustion. This is $\rm C_6H_6$.
		Green chemistry and industry
24	D	The reaction remains the same, so the atom economy stays the same.
		With a higher percentage yield more of the wanted product is formed. The <i>E</i> -factor will decrease.
25	F	15 g of powder contains $\frac{15 \times 0.98}{81.38}$ mol ZnO. This will create a maximum of
		$\frac{15 \times 0.98}{81.38}$ mol Zn. This method produces $\frac{8.0}{65.38}$ mol Zn.
		The percentage yield is $\frac{\frac{8.0}{65.38}}{\frac{15 \times 0.98}{81.38}} \times 10^2 \% = 68\%.$

Open questions

□1

□2

Problem 2 11 points Determining manganese levels in tea leaves Maximum score 3 IO_4^- + 2 H⁺ + 2 e⁻ \rightarrow IO_3^- + H₂O \cdot IO₄⁻ and H⁺ before the arrow and IO₃⁻ and H₂O after the arrow 1 $\cdot e^{-}$ before the arrow correct coefficients 1 Maximum score 4 Examples of a correct answer are: $\frac{0.1}{100} \times 3$ g Mn²⁺ in 3 g of tea, which is $\frac{\frac{0.1}{100} \times 3}{54.94}$ mol Mn²⁺. This reacts with $\frac{\frac{0.1}{100} \times 3}{\frac{5}{54.94}} \times \frac{5}{2} \text{ mol } IO_4^-. \text{ Therefore, a minimum of } \frac{\frac{0.1}{100} \times 3}{\frac{5}{54.94}} \times \frac{5}{2} \times 230.00 = 3 \cdot 10^{-2} \text{ g KIO}_4 \text{ is}$ needed. This is substantially less than the 0.5 g which is added. · calculation of the number of g of Mn^{2+} in 3 g tea leaves: divide 0.1(%) by 100(%) and 1 multiply by 3 (g) · calculation of the number of moles of Mn^{2+} : divide the number of g Mn^{2+} in 3 g tea by 54.94 (g mol⁻¹) 1 · calculation of number of moles of IO_4^- needed: multiply the number of moles of Mn^{2+} by $\frac{5}{2}$ 1 \cdot calculation of the minimum number of g of KIO₄ needed: multiply the number of moles of IO_4^- needed by 230.00 (g mol⁻¹) and conclusion 1 and 0.5 g potassium periodate contains $\frac{0.5}{230.00}$ mol IO₄⁻. This reacts with $\frac{0.5}{230.00} \times \frac{2}{5}$ mol Mn²⁺; which is $\frac{0.5}{230.00} \times \frac{2}{5} \times 54.94 = 0.048$ g Mn²⁺. 3 g tea leaves contain $\frac{0.1}{100} \times 3 = 0,003$ g Mn²⁺. This is substantially less than the 0.048 g Mn^{2+} with which 0.5 g potassium periodate can react. · calculation of the number of moles of IO_4^- in 0.5 g potassium periodate: divide 0.5 (g) by 230.00 (g mol⁻¹) 1 · calculation of the number of moles of Mn²⁺ that can react with it: multiply the number of moles of IO_4^- in 0.5 g potassium periodate by $\frac{2}{5}$ 1 \cdot calculation of the number of g of Mn^{2+} that can react with 0.5 g potassium periodate: multiply the number of moles of Mn^{2+} that can react with it by 54.94 (g mol⁻¹) 1 · calculation of the number of g of Mn^{2+} in 3 g tea leaves: divide 0.1(%) by 100(%) and multiply with 3 (g) and conclusion 1

1

D3 Maximum score 4

An example of a correct answer is:

The MnO₄⁻ content was 0.290 mmol L⁻¹, so there was $50.00 \times 10^{-3} \times 0.290$ mmol MnO₄⁻ in 50.00 mL solution. Therefore, there was $50.00 \times 10^{-3} \times 0.290$ mmol Mn²⁺ in the 2.580 g tea leaves; that is $50.00 \times 10^{-3} \times 0.290 \times 54.94$ mg. Therefore the Mn²⁺ mass percentage is $50.00 \times 10^{-3} \times 0.290 \times 54.94$ ms. Therefore the Mn²⁺ mass percentage is $50.00 \times 10^{-3} \times 0.290 \times 54.94$ ms. Therefore the Mn²⁺ mass percentage is $50.00 \times 10^{-3} \times 0.290 \times 54.94$ ms.

$$2.580 \times 10^{3}$$

 \cdot reading the MnO4⁻ content: 0.290 \pm 0.005 (mmol L^-1)

- \cdot calculation of the number of mmoles of Mn^{2+} in the 2.580 g tea leaves (is equal to the number of mmoles of MnO_4^- in the 50.00 mL solution): multiply the read MnO_4^- content by 10^{-3} (L mL⁻¹) and by 50.00 (mL)
- \cdot calculation of the number of mg of Mn^{2+} in the 2.580 g tea leaves: multiply the number of mmoles of Mn^{2+} in the 2.580 g tea leaves by 54.94 (mg mmol^{-1})
- \cdot rest of the calculation

Note

When, in an otherwise correct answer, the MnO_4^- content was read as 0.29 mmol L^{-1} , award full marks.

1

1

1

1

Problem 3 Vasa

□6 Maximum score 3

A correct answer can be expressed as follows:

$$H \left(O - CH_2 - CH_2 \right)_n O^{\Theta} + H_2 O \longrightarrow H \left(O - CH_2 - CH_2 \right)_n OH + OH^{\Theta}$$

 $\cdot H \left(O - CH_2 - CH_2 \right)_n O^{\Theta}$ before the arrow

 \cdot H₂O before the arrow

- \cdot correct formulas after the arrow
- Daximum score 4

An example of a correct calculation is:

 $\frac{88}{44}$ mol epoxyethane reacts. And 92 – 88 g H₂O reacts, that is $\frac{92-88}{18}$ mol.

Therefore
$$\frac{92-88}{18}$$
 mol polyepoxyethane forms. Thus $n = \frac{\frac{33}{44}}{\frac{92-88}{18}} = 9$

- \cdot calculation of the number of moles of epoxyethane that have reacted: divide 88 (g) by the molar mass of epoxyethane
- \cdot calculation of the number of grams of water that has reacted: 92 88
- calculation of the number of moles of polyepoxyethane that has been formed (is equal to the number of moles of water that have reacted): divide the number of grams of water by the molar mass of water
- \cdot calculation of *n*: divide the number of moles of epoxyethane that have reacted, by the number of moles of polyepoxyethane that has been formed
- □8 Maximum score 3

An example of a correct answer is:

Polyepoxyethane with (on average) longer molecules has a higher melting range due to stronger van der Waals forces. The less water reacts, (the fewer termination reactions occur and) the longer the chains that are formed. So, in experiment 2 (with the smallest amount of water), polyepoxyethane with the highest melting range is formed.

- \cdot polyepoxyethane with longer molecules has a higher melting range because the van der Waals forces are stronger
- \cdot the less water reacts, the longer the molecules that are formed
- \cdot so: in experiment 2, polyepoxyethane with the highest melting range is formed
- If an answer is given as: "With more water, more OH groups are formed, causing stronger molecular attachment through hydrogen bonds. Therefore, in experiment 1, polyepoxyethane with the highest melting range is formed."

1

1

1

1

1

1

1

1

1

1

0