NATIONAL CHEMISTRY OLYMPIAD 2024

MARKING SCHEME PRELIMINARY ROUND 1

To be conducted from 15 until 31 January 2024

- This preliminary round consists of 25 multiple choice questions divided over 9 topics and 2 problems with a total of 8 open questions as well as an answer sheet for the multiple choice questions.
- Use the answer sheet to answer the multiple choice questions.
- Use for each problem with open questions a separate answer sheet. Don't forget to put your name on it.
- The maximum score for this work is 77 points.
- The preliminary round lasts up to two full hours.
- Required materials: (graphic) calculator and BINAS $6^{\text {th }}$ or $7^{\text {th }}$ edition, ScienceData $1^{\text {st }}$ edition or BINAS $5^{\text {th }}$ edition, English version.
- For each question the number of points you can score are given.
- Unless otherwise stated, standard conditions apply: $T=298 \mathrm{~K}$ and $p=p_{0}$.

For every correct answer: 2 points

		Carbon chemistry
1	D	In step 1, an addition of HBr takes place to the double bond. In step 2, Br is substituted by OH .
2	B	The polymer was created by addition polymerization of
3	B	At B , the chlorine atom can replace an H atom on C atom 1 or on C atom 2. The following monochloro substitution products are formed: and When the chlorine atom is placed on C atom $1, \mathrm{C}$ atom 2 becomes an asymmetric C atom, indicated with an asterisk. There are therefore two mirror image isomers of that structure that have the same boiling point. The other compounds produce more than three isomers.
4	B	The electron pair from the bond between the 0 atom and the C atom becomes a lone pair on the O atom. The arrow must therefore point in the direction of the 0 atom.
		Reaction rate and equilibrium
5	D	When the solution is diluted, the equilibrium shifts to the right. The number of moles of $\mathrm{H}_{3} \mathrm{O}^{+}$increases. However, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$becomes smaller. So the pH increases.
6	A	$\frac{0.98 \times 1.0 \cdot 10^{-3}}{88} \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ is converted in $4.0 \times 60 \mathrm{sec}$. So the reaction rate is $\frac{\frac{0.98 \times 1.0 \cdot 10^{-3}}{88}}{4.0 \times 60}=4.6 \cdot 10^{-8} \mathrm{~mol} \mathrm{~s}^{-1}$.
7	C	$K=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}$ $0.2000-0.1513 \mathrm{~g} \mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$ has been dissolved, that is $\frac{0.2000-0.1513}{487.1} \mathrm{~mol} \mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}$. $\left[\mathrm{Ba}^{2+}\right]=\frac{\frac{0.2000-0.1513}{487.1}}{0.100}=9.998 \cdot 10^{-4} \mathrm{molL}^{-1} \text { and }\left[\mathrm{IO}_{3}^{-}\right]=2 \times 9.998 \cdot 10^{-4} \mathrm{molL}^{-1} .$ So $K=9.998 \cdot 10^{-4} \times\left(2 \times 9.998 \cdot 10^{-4}\right)^{2}=4.00 \cdot 10^{-9}$.
8	C	The reaction rate depends on the degree of distribution of the zinc, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and the temperature. These have all remained the same at C .

		Thermochemistry
9	A	For reaction 1 applies $\Delta H=-0.133 \cdot 10^{5}+2 \times 0.332 \cdot 10^{5}=0.531 \cdot 10^{5} \mathrm{~J}$ per $\mathrm{mol}_{2} \mathrm{O}_{5}$. For reaction 2 applies $\Delta H=-0.332 \cdot 10^{5}+0.913 \cdot 10^{5}=0.581 \cdot 10^{5} \mathrm{~J}$ per $\mathrm{mol} \mathrm{NO}_{2}$. For the total conversion, $0.725 \cdot 10^{5} \mathrm{~J}$ per $\mathrm{mol}_{2} \mathrm{O}_{5}$ was needed. The number of moles of NO_{2} that still has to be converted is therefore $\frac{0.725 \cdot 10^{5}-0.531 \cdot 10^{5}}{0.581 \cdot 10^{5}}=0.334 \mathrm{~mol} .$ Per mole of $\mathrm{N}_{2} \mathrm{O}_{5}, 2$ moles of NO_{2} are formed, so in reaction $2, \frac{0.334}{2} \times 100=16.7 \%$ of the generated NO_{2} is further converted.
		Structures and formulas
10	D	In structure A, the charges on the nitrogen atoms are incorrect. In structures B and C the structures do not have enough electrons and the charges are also incorrect.
11	B	In COCl_{2}, the C has a double bond to the O and a single bond to the Cl atoms. There are no lone pairs on the C atom. In the other answers, the indicated atoms have an electron domain geometry of 4 .
12	B	Hg^{+}has 79 electrons. I^{-}has 54. Cu^{+}and Zn^{2+} have 28. Ni^{2+} has 26.
		pH / acid-base
13	C	
14	C	The sodium hydroxide solution contains $150 \times 0.150=22.5 \mathrm{mmol} \mathrm{OH}^{-}$ and the hydrochloric acid contains $250 \times 0.100=25.0 \mathrm{mmol} \mathrm{H}_{3} \mathrm{O}^{+}$. Therefore there is $25.0-22.5=2.5 \mathrm{mmol} \mathrm{H}_{3} \mathrm{O}^{+}$in excess. The total volume is $150+250=400 \mathrm{~mL}$, so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{2.5}{400} ; \mathrm{pH}=-\log \frac{2.5}{400}=2.20$.

15	F	$\begin{aligned} & \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \\ & \mathrm{pOH}=14.00-7.41=6.59 ;\left[\mathrm{OH}^{-}\right]=10^{-6.59} \\ & K_{\mathrm{b}}=1.6 \cdot 10^{-7}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] \times\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] \times 10^{-6.59}}{\left[\mathrm{HPO}_{4}^{2-}\right]} \\ & {\left[\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}=\frac{1.6 \cdot 10^{-7}}{10^{-6.59}}=0.62\right.} \end{aligned}$ The mole ratio is therefore $0.62 \mathrm{~mol} \mathrm{NaH}_{2} \mathrm{PO}_{4}\left(M=120 \mathrm{~g} \mathrm{~mol}^{-1}\right): 1.0 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{HPO}_{4}\left(M=142 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. The mass ratio is $74.7 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4}: 142 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4}=1.0 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4}: 1.9 \mathrm{~g} \mathrm{Na}_{2} \mathrm{HPO}_{4} .$
		Redox and electrolysis
16	C	For the production of $1.0 \mathrm{~g} \mathrm{Li} \frac{1.0}{6.941} \mathrm{~mol}$ electrons are required. For the production of $1.0 \mathrm{~g} \mathrm{Al} \frac{1.0}{26.98} \times 3 \mathrm{~mol}$ electrons are required. Therefore the production of 1.0 g Al takes $\frac{\frac{1.0}{26.98} \times 3}{\frac{1.0}{6.941}}=0.77$ times longer than the production of 1.0 g Li with the same current.
17	C	The standard electrode potentials of the redox couples are: $\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}+1.36 \mathrm{~V} \\ & \mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}+1.51 \mathrm{~V} \end{aligned}$ Therefore the oxidizing agent $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ cannot react with the reducing agent Mn^{2+}. $\begin{array}{ll} \mathrm{NO}_{3}^{-} / \mathrm{NO}_{2} & +0.80 \mathrm{~V} \\ \mathrm{SO}_{4}{ }^{2-} / \mathrm{SO}_{2} & +0.17 \mathrm{~V} \end{array}$ Therefore the oxidizing agent $\mathrm{NO}_{3}{ }^{-}$can react with the reducing agent SO_{2}.
		Analysis
18	D	8.5 mL hydrochloric acid is required for 1.0 mL of the undiluted ammonia solution. $25.00 \times 8.5=212.5 \mathrm{~mL}$ hydrochloric acid is required for 25.00 mL of the undiluted ammonia solution. Between 12 mL and 25 mL hydrochloric acid should be used, therefore the dilution factor must be between $\frac{212.5}{25}=8.5$ and $\frac{212.5}{12}=18$. The dilution factors of A, B, C, D and E are respectively $25,50,4,10$ and 20.

19	D	During the titration $14.36 \times 0.00850=0.122 \mathrm{mmol}$ of AgNO_{3} was used. Because $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}$, this also makes 0.122 mmol Cl - in the 10.00 mL of the diluted sodium chloride solution. Which means that 10.00 mL of the diluted NaCl solution contained 0.122 mmol NaCl . In 10.00 mL undiluted solution $\frac{0.122 \times 250.0}{10.00}=3.05 \mathrm{mmol} \mathrm{NaCl}$ was present. The molarity of the undiluted NaCl solution was: $\frac{3.05}{10.00}=3.05 \cdot 10^{-1} \mathrm{molL}^{-1}$.
20	G	Fragmentation of the molecules I en III will cause $\mathrm{C}_{3} \mathrm{H}_{7}^{+}$fragments that peak around $m / z=43$. Fragmentation of the molecule II will cause fragments of $\mathrm{CH}_{3} \mathrm{CO}^{+}$that peak around $m / z=43$.
21	A	At the first equivalence point at 6 mL sodium hydroxide solution only the stronger acid has completely reacted. At the second equivalence point, which is at 10 mL (so 4 mL later), the weaker acid has also completely reacted. Therefore, to completely convert a strong acid one needs more of the base, and the molarity of the strong acid is larger. This means that statement I is incorrect. Methyl yellow has a colour change range that lies between 2.9 and 4.0. It changes colour too early, which causes the first equivalence point to be imprecisely determined. Statement II is also wrong.
		Chemical calculations
22	E	$\frac{16.0}{55.85} \mathrm{~mol}$ Fe reacts; this has a volume of $\frac{16.0}{7.87}=2.03 \mathrm{~cm}^{3}$. This creates $\frac{16.0}{55.85} \times \frac{2}{4} \times 159.7 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ with a volume of $\frac{\frac{16.0}{55.85} \times \frac{2}{4} \times 159.7}{5.25}=4.36 \mathrm{~cm}^{3}$. Increase in volume $=4.36-2.03=2.33 \mathrm{~cm}^{3}$.
23	C	The hydrocarbon with the highest mass percentage of carbon yields the largest amount of CO_{2} upon combustion. This is $\mathrm{C}_{6} \mathrm{H}_{6}$.
		Green chemistry and industry
24	D	The reaction remains the same, so the atom economy stays the same. With a higher percentage yield more of the wanted product is formed. The E-factor will decrease.
25	F	15 g of powder contains $\frac{15 \times 0.98}{81.38} \mathrm{~mol} \mathrm{ZnO}$. This will create a maximum of $\frac{15 \times 0.98}{81.38} \mathrm{~mol} \mathrm{Zn}$. This method produces $\frac{8.0}{65.38} \mathrm{~mol} \mathrm{Zn}$. The percentage yield is $\frac{\frac{8.0}{65.38}}{\frac{15 \times 0.98}{81.38}} \times 10^{2} \%=68 \%$.

Open questions

Problem 2 Determining manganese levels in tea leaves

Maximum score 3
$1 \mathrm{O}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$

- IO_{4}^{-}and H^{+}before the arrow and IO_{3}^{-}and $\mathrm{H}_{2} \mathrm{O}$ after the arrow
- e^{-}before the arrow
- correct coefficients
-2 Maximum score 4
Examples of a correct answer are:
$\frac{0.1}{100} \times 3 \mathrm{~g} \mathrm{Mn}^{2+}$ in 3 g of tea, which is $\frac{\frac{0.1}{100} \times 3}{54.94} \mathrm{~mol} \mathrm{Mn}^{2+}$. This reacts with
$\frac{\frac{0.1}{100} \times 3}{54.94} \times \frac{5}{2} \mathrm{~mol} \mathrm{IO}_{4}^{--}$. Therefore, a minimum of $\frac{\frac{0.1}{100} \times 3}{54.94} \times \frac{5}{2} \times 230.00=3 \cdot 10^{-2} \mathrm{~g} \mathrm{KIO}_{4}$ is needed.
This is substantially less than the 0.5 g which is added.
- calculation of the number of g of Mn^{2+} in 3 g tea leaves: divide 0.1 (\%) by $100(\%)$ and multiply by 3 (g)
- calculation of the number of moles of Mn^{2+} : divide the number of $\mathrm{g} \mathrm{Mn}{ }^{2+}$ in 3 g tea by $54.94\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$
- calculation of number of moles of IO_{4}^{-}needed: multiply the number of moles of Mn^{2+} by $\frac{5}{2}$
. calculation of the minimum number of g of KIO_{4} needed: multiply the number of moles of $1 \mathrm{O}_{4}^{-}$needed by $230.00\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ and conclusion
and
0.5 g potassium periodate contains $\frac{0.5}{230.00}{\mathrm{~mol} \mathrm{IO}_{4}^{-}}^{-}$. This reacts with $\frac{0.5}{230.00} \times \frac{2}{5} \mathrm{~mol} \mathrm{Mn}^{2+}$;
which is $\frac{0.5}{230.00} \times \frac{2}{5} \times 54.94=0.048 \mathrm{~g} \mathrm{Mn}^{2+}$.
3 g tea leaves contain $\frac{0.1}{100} \times 3=0,003 \mathrm{~g} \mathrm{Mn}^{2+}$.
This is substantially less than the $0.048 \mathrm{~g} \mathrm{Mn}^{2+}$ with which 0.5 g potassium periodate can react.
- calculation of the number of moles of IO_{4}^{-}in 0.5 g potassium periodate: divide $0.5(\mathrm{~g})$ by $230.00\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$
- calculation of the number of moles of Mn^{2+} that can react with it: multiply the number of moles of IO_{4}^{-}in 0.5 g potassium periodate by $\frac{2}{5}$
. calculation of the number of g of Mn^{2+} that can react with 0.5 g potassium periodate:
multiply the number of moles of Mn^{2+} that can react with it by $54.94\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$
- calculation of the number of g of Mn^{2+} in 3 g tea leaves: divide 0.1 (\%) by $100(\%)$ and multiply with $3(\mathrm{~g})$ and conclusion
- 3 Maximum score 4

An example of a correct answer is:
The MnO_{4}^{-}content was $0.290 \mathrm{mmol} \mathrm{L}^{-1}$, so there was $50.00 \times 10^{-3} \times 0.290 \mathrm{mmol} \mathrm{MnO}_{4}^{-}$in 50.00 mL solution. Therefore, there was $50.00 \times 10^{-3} \times 0.290 \mathrm{mmol}_{\mathrm{Mn}^{2+}}$ in the 2.580 g tea leaves; that is $50.00 \times 10^{-3} \times 0.290 \times 54.94 \mathrm{mg}$. Therefore the Mn^{2+} mass percentage is $\frac{50.00 \times 10^{-3} \times 0.290 \times 54.94}{2.580 \times 10^{3}} \times 10^{2} \%=0.0309 \%$.

- reading the MnO_{4}^{-}content: 0.290 ± 0.005 ($\mathrm{mmol} \mathrm{L}^{-1}$)
- calculation of the number of mmoles of Mn^{2+} in the 2.580 g tea leaves (is equal to the number of mmoles of MnO_{4}^{-}in the 50.00 mL solution): multiply the read MnO_{4}^{-}content by $10^{-3}\left(\mathrm{~L} \mathrm{~mL}^{-1}\right)$ and by $50.00(\mathrm{~mL})$
calculation of the number of mg of Mn^{2+} in the 2.580 g tea leaves: multiply the number of mmoles of Mn^{2+} in the 2.580 g tea leaves by $54.94\left(\mathrm{mg} \mathrm{mmol}^{-1}\right)$
- rest of the calculation

Note

When, in an otherwise correct answer, the MnO_{4}^{-}content was read as $0.29 \mathrm{mmol} \mathrm{L}^{-1}$, award full marks.
-4 Maximum score 3
A correct answer can be expressed as follows:

and

- correct structural formulas of ion A and of a molecule of epoxyethane before the arrow in the first reaction equation
- correct structural formula of the coupling product after the arrow in the first reaction
correct coupling of the particle that is formed in the first reaction with a molecule of epoxyethane, depicted in structural formulas

Note:
When the following answer is given, award full marks:

口5 Maximum score 3
Examples of a correct answer are:

and

- main chain correctly represented
- methyl groups correctly represented
- start and end of the fragment indicated with $\sim \sim$, or •

If the following answer is given:

Note

When in contradiction to the above correct structural formula a 1,2-epoxypropane unit is 'reversed' linked, do not penalize.

Maximum score 3
A correct answer can be expressed as follows:

- $\left.\mathrm{H} f \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n} \mathrm{O}^{\ominus}$ before the arrow
- $\mathrm{H}_{2} \mathrm{O}$ before the arrow
- correct formulas after the arrow

口7 Maximum score 4
An example of a correct calculation is:
$\frac{88}{44}$ mol epoxyethane reacts. And $92-88 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ reacts, that is $\frac{92-88}{18} \mathrm{~mol}$.
Therefore $\frac{92-88}{18}$ mol polyepoxyethane forms. Thus $n=\frac{\frac{88}{44}}{\frac{92-88}{18}}=9$.

- calculation of the number of moles of epoxyethane that have reacted: divide $88(\mathrm{~g})$ by the
molar mass of epoxyethane
- calculation of the number of grams of water that has reacted: 92-88
- calculation of the number of moles of polyepoxyethane that has been formed (is equal to the number of moles of water that have reacted): divide the number of grams of water by the molar mass of water
- calculation of n : divide the number of moles of epoxyethane that have reacted, by the number of moles of polyepoxyethane that has been formed

Maximum score 3
An example of a correct answer is:
Polyepoxyethane with (on average) longer molecules has a higher melting range due to stronger van der Waals forces. The less water reacts, (the fewer termination reactions occur and) the longer the chains that are formed. So, in experiment 2 (with the smallest amount of water), polyepoxyethane with the highest melting range is formed.

- polyepoxyethane with longer molecules has a higher melting range because the van der Waals forces are stronger
- the less water reacts, the longer the molecules that are formed
so: in experiment 2, polyepoxyethane with the highest melting range is formed
If an answer is given as: „With more water, more OH groups are formed, causing stronger molecular attachment through hydrogen bonds. Therefore, in experiment 1, polyepoxyethane with the highest melting range is formed."

